top-k-frequent-elements
https://leetcode.cn/problems/top-k-frequent-elements/description/
使用排序的方法
function topKFrequentSort(nums: number[], k: number): number[] {
const frequencyMap = new Map<number, number>();
// 统计每个数字的频率
for (const num of nums) {
frequencyMap.set(num, (frequencyMap.get(num) || 0) + 1);
}
// 将频率映射转换为数组并按频率降序排序
const sortedFrequencies = Array.from(frequencyMap.entries()).sort(
(a, b) => b[1] - a[1],
);
// 返回前k个高频元素
return sortedFrequencies.slice(0, k).map((entry) => entry[0]);
}
console.log(topKFrequentSort([1, 1, 1, 2, 2, 3], 2)); // 输出: [1,2]
console.log(topKFrequentSort([1], 1)); // 输出: [1]
使用最小堆的方法(更优化, 该阶段可以不用看)
- Prerequisite: You should have a basic understanding of heap data structures and their implementation in JavaScript.
class MinHeap {
private heap: [number, number][] = [];
push(val: [number, number]): void {
this.heap.push(val);
this.bubbleUp(this.heap.length - 1);
}
pop(): [number, number] {
const top = this.heap[0];
const last = this.heap.pop()!;
if (this.heap.length > 0) {
this.heap[0] = last;
this.bubbleDown(0);
}
return top;
}
private bubbleUp(index: number): void {
while (index > 0) {
const parentIndex = Math.floor((index - 1) / 2);
if (this.heap[parentIndex][1] > this.heap[index][1]) {
[this.heap[parentIndex], this.heap[index]] = [
this.heap[index],
this.heap[parentIndex],
];
index = parentIndex;
} else {
break;
}
}
}
private bubbleDown(index: number): void {
while (true) {
let smallestIndex = index;
const leftChild = 2 * index + 1;
const rightChild = 2 * index + 2;
if (
leftChild < this.heap.length &&
this.heap[leftChild][1] < this.heap[smallestIndex][1]
) {
smallestIndex = leftChild;
}
if (
rightChild < this.heap.length &&
this.heap[rightChild][1] < this.heap[smallestIndex][1]
) {
smallestIndex = rightChild;
}
if (smallestIndex !== index) {
[this.heap[index], this.heap[smallestIndex]] = [
this.heap[smallestIndex],
this.heap[index],
];
index = smallestIndex;
} else {
break;
}
}
}
get size(): number {
return this.heap.length;
}
}
function topKFrequentHeap(nums: number[], k: number): number[] {
const frequencyMap = new Map<number, number>();
// 统计每个数字的频率
for (const num of nums) {
frequencyMap.set(num, (frequencyMap.get(num) || 0) + 1);
}
const minHeap = new MinHeap();
// 维护一个大小为k的最小堆
for (const [num, freq] of frequencyMap.entries()) {
if (minHeap.size < k) {
minHeap.push([num, freq]);
} else if (freq > minHeap.heap[0][1]) {
minHeap.pop();
minHeap.push([num, freq]);
}
}
// 返回堆中的元素(即为前k个高频元素)
return minHeap.heap.map((entry) => entry[0]);
}
// 测试
console.log(topKFrequentHeap([1, 1, 1, 2, 2, 3], 2)); // 输出: [1,2]
console.log(topKFrequentHeap([1], 1)); // 输出: [1]